Skip to content

ProfoundAdvice

Answers to all questions

Menu
  • Home
  • Trendy
  • Most popular
  • Helpful tips
  • Life
  • FAQ
  • Blog
  • Contacts
Menu

How do you find the flux of a sphere?

Posted on October 31, 2020 by Author

How do you find the flux of a sphere?

We now find the net flux by integrating this flux over the surface of the sphere: Φ=14πϵ0qR2∮SdA=14πϵ0qR2(4πR2)=qϵ0. Φ=qϵ0. A remarkable fact about this equation is that the flux is independent of the size of the spherical surface.

Is divergence the same as flux?

Divergence and flux are closely related – if a volume encloses a positive divergence (a source of flux), it will have positive flux. “Diverge” means to move away from, which may help you remember that divergence is the rate of flux expansion (positive div) or contraction (negative div).

Can you use divergence theorem on a sphere?

We cannot apply the divergence theorem to a sphere of radius a around the origin because our vector field is NOT continuous at the origin.

What is flux in sphere?

Considering a Gaussian surface in the form of a sphere at radius r > R , the electric field has the same magnitude at every point of the surface and is directed outward. The electric flux is then just the electric field times the area of the spherical surface.

READ:   How do you factorise expressions?

Can you use divergence theorem on an open surface?

Surface must be closed But unlike, say, Stokes’ theorem, the divergence theorem only applies to closed surfaces, meaning surfaces without a boundary. For example, a hemisphere is not a closed surface, it has a circle as its boundary, so you cannot apply the divergence theorem.

Why can’t we use the divergence theorem to evaluate flux integral?

Because this is not a closed surface, we can’t use the divergence theorem to evaluate the flux integral. However, if we had a closed surface, for example the second figure to the right (which includes a bottom surface, the yellow section of a plane) we could. We’ll consider this in the following. The divergence theorem says

What is the divergence at p in this equation?

This equation says that the divergence at P is the net rate of outward flux of the fluid per unit volume. The divergence theorem translates between the flux integral of closed surface S and a triple integral over the solid enclosed by S.

READ:   What is a operators in programming?

How do you find the divergence of an integral?

The divergence theorem part of the integral: Here div F = y + z + x. Note that here we’re evaluating the divergence over the entire enclosed volume, so we can’t evaluate it on the surface.

What is the use of divergence theorem in physics?

The divergence theorem has many uses in physics; in particular, the divergence theorem is used in the field of partial differential equations to derive equations modeling heat flow and conservation of mass. We use the theorem to calculate flux integrals and apply it to electrostatic fields.

Popular

  • Can DBT and CBT be used together?
  • Why was Bharat Ratna discontinued?
  • What part of the plane generates lift?
  • Which programming language is used in barcode?
  • Can hyperventilation damage your brain?
  • How is ATP made and used in photosynthesis?
  • Can a general surgeon do a cardiothoracic surgery?
  • What is the name of new capital of Andhra Pradesh?
  • What is the difference between platform and station?
  • Do top players play ATP 500?

Pages

  • Contacts
  • Disclaimer
  • Privacy Policy
© 2025 ProfoundAdvice | Powered by Minimalist Blog WordPress Theme
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT