Table of Contents
What is the effect of increasing sampling rate?
The more samples that are taken, the more detail about where the waves rise and fall is recorded and the higher the quality of the audio. Also, the shape of the sound wave is captured more accurately.
How do I increase my ADC resolution?
The accuracy of a low-resolution ADC can be improved by oversampling the input signal using the ADC and subjecting it to low-pass filtering, using a FIR filter to filter out the quantization noise, and then decimating it.
How does ADC increase sampling rate?
To increase the sampling rate of an ADC whose comparators are already running at maximum speed, the number of upper (coarse) and lower (fine) quantizer blocks must be extended. This can be achieved by implementing an N-bit, coarse ADC and two time-interleaved, N-bit, fine ADCs (Figure 2).
What does the sampling rate mean?
samples per second
Term: Sampling rate (audio) Definition: Sampling rate or sampling frequency defines the number of samples per second (or per other unit) taken from a continuous signal to make a discrete or digital signal.
What is ADC sampling rate?
The sample rate for an ADC is defined as the number of output samples available per unit time and is specified as samples per second (SPS). Two aspects of sample rate that must be considered when selecting an ADC for a particular application are the minimum sample rate and maximum sample rate.
What is over sampling ADC?
Oversampling is a cost-effective process of sampling the input signal at a much higher rate than the Nyquist frequency to increase the SNR and resolution (ENOB) that also relaxes the requirements on the antialiasing filter.
What is sampling and quantization in ADC?
An analog-to-digital converter (ADC) can be modeled as two processes: sampling and quantization. Sampling converts a time-varying voltage signal into a discrete-time signal, a sequence of real numbers. Quantization replaces each real number with an approximation from a finite set of discrete values.
Does sample rate conversion affect sound quality?
The other place where you may run into issues with higher sample rates is when converting from a high rate to a standard rate (44.1kHz and 48kHz). But today’s sample rate conversion algorithms do an amazing job, so converting shouldn’t result in much, if any, noticeable degradation to the sound quality.
How can I increase the resolution of analog-to-digital (ADC) measurements?
Oversampling and averaging can increase the resolution of a measurement without resorting to the cost and complexity of using expensive off-chip ADCs. This application note discusses how to increase the resolution of analog-to-digital (ADC) measure- ments by oversampling and averaging.
What is the advantage of sampling at higher frequency?
Sampling at a higher frequency will give you more effective number of bits (ENOB), up to the limits of the spurious free dynamic range of the Analog to Digital Converter (ADC) you are using (as well as other factors such as the analog input bandwidth of the ADC).
How is oversampling applied to embedded ADCs?
The oversampling approach can be applied to just about any MCU with an embedded ADC, so to see exactly how it’s done, we use a 16-bit RISC-based MCU (Maxim’s MAXQ2010) to demonstrate the averaging and oversampling control. The MAXQ2010 incorporates a 12-bit, 312-ksps ADC with 1 LSB of INL and DNL.
How does oversampling affect the SNR of a digital signal?
M can have any integer value, on condition that the output data rate is more than twice the signal bandwidth. Oversampling and averaging increases the SNR, which is equivalent to gaining additional bits of resolution. For each such additional bit, the signal must be oversampled by a factor of four: